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Abstract. A novel tensor decomposition called pattern or P-decomposition is

proposed to make it possible to identify replicating structures in complex data,

such as textures and patterns in music spectrograms. In order to establish a com-

putational framework for this paradigm, we adopt a multiway (tensor) approach.

To this end, a novel tensor product is introduced, and the analysis of its properties

shows a perfect match to the identification of recurrent data structures. Out of

a whole class of possible algorithms, we illuminate those derived so as to cater

for orthogonal and nonnegative patterns. Simulations on texture images and mu-

sic sequence confirm the benefits of the proposed model and of the associated

learning algorithms.

Key words: tensor decomposition, tensor product, pattern analysis, nonnegative matrix

decomposition, structural complexity

1 Problem Formulation

Estimation problems for data with self-replicating structures, such as images, various

textures and music spectrograms require specifically designed approaches to identify,

approximate, and retrieve the dynamical structures present in the data. By modeling

data via summations of Kronecker products of two matrices (scaling and pattern ma-

trices), Loan and Pitsianis [1] established an approximation to address this problem.

Subsequently, Nagy and Kilmer [2] addressed 3-D image reconstruction from real-

world imaging systems in which the point spread function was decomposed into a

Kronecker product form, Bouhamidi and Jbilou [3] used Kronecker approximation for

image restoration, Ford and Tyrtyshnikov focused on sparse matrices in the wavelet

domain [4], while the extension to tensor data was addressed in [5].

It is important to note that at present, the Kronecker approximation [1] is limited

to 2-D structures which are required to have the same dimension. In this paper, we

generalize this problem by considering replicas (or similar structures) for multiway data
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Y . To this end, we explain the tensor Y by a set of patterns and their locations, while

allowing the patterns to have different dimensions. In order to formulate mechanism

of data replication, we define a new tensor product which is a generalization of the

standard matrix Kronecker product, and is particularly suited for data with recurrent

complex structures.

Definition 1 (Kronecker tensor product). Let A = [a j] and B = [bk] be two N-

dimensional tensors of size J1 × J2 × · · · × JN and K1 × K2 × · · · × KN , respectively, j =

[ j1, j2, . . . , jN], 1 ≤ jn ≤ Jn and k = [k1, k2, . . . , kN], 1 ≤ kn ≤ Kn. A Kronecker

tensor product of A and B is defined as an N-D tensor C = [ci] ∈ R
I1×I2×···×IN , i =

[i1, i2, . . . , iN], In = JnKn such that ci = a j bk, in = kn + ( jn − 1)Kn, and is expressed as

C =A ⊗B.

Remark 1. If C is partitioned into an J1 × J2 × · · · × JN block tensor, each block- j

( j = [ j1, j2, . . . , jN]) can be written as a jB.

In this article, we aim to solve the following problem:

Problem 1 (A New Tensor Decomposition). Given an N-dimensional tensorY of size

I1 × I2 × · · · × IN , find smaller scale tensorsAp, Xp, p = 1, ..., P such that

Y ≈

P∑

p=1

Ap ⊗Xp. (1)

We term sub-tensors Xp of size Kp1 × Kp2 × · · · × KpN as patterns, whileAp of dimen-

sions Jp1 × Jp2 × · · · × JpN such that In = Jpn Kpn, are called intensities (see Remark 1).

This new tensor decomposition is different from other existing tensor/matrix de-

compositions such as the canonical polyadic decomposition (CP) [6], the Tucker de-

composition (TD) [7] and the block component decomposition (BCD) [8], in that it

models the relation between latent variables via links between factor matrices and core

tensor(s) which can be diagonal (for CP) or dense tensors (for TD). In a particular case

when all Ap, p = 1, . . . , P in (1) become vectors of size In or have only one non-

singleton dimension, Problem 1 simplifies into BCD which finds only one factor matrix

for each core tensor.

In the sequel, we introduce methods to solve Problem 1 with/without nonnegative

constraints. Simulations on a music sequence and on complex images containing tex-

tures validate the proposed tensor decomposition.

2 Notation and Basic Multilinear Algebra

Throughout the paper, an N-dimensional vector will be denoted by an italic lowercase

boldface letters, with its components in squared brackets, for example i = [i1, i2, . . . , iN]

or I = [I1, I2, . . . , IN].

Definition 2 (Tensor unfolding [9]). Unfolding a tensor Y ∈ RI1×I2×···×IN along modes

r = [r1, r2, . . . , rM] and c = [c1, c2, . . . , cN−M] where [r, c] is a permutation of [1, 2, . . . ,N]

aims to rearrange this tensor to a matrix Yr×c of size

M∏

k=1

Irk
×

N−M∏

l=1

Icl
whose entries
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( j1, j2) are given by Yr×c( j1, j2) = Y(ir, ic), where ir = [ir1
. . . irM

], ic = [ic1
. . . icN−M

],

j1 = ivec(ir, Ir), j2 = ivec(ic, Ic), and ivec(i, I) = i1 +

N∑

n=2

(in − 1)

n−1∏

j=1

I j.

If c = [c1 < c2 < · · · < cN−M], then Yr×c simplifies into Y(r), while for r = n and

c = [1, . . . , n − 1, n + 1, . . . ,N], we have mode-n matricization Yr×c = Y(n).

Definition 3 (Reshaping). The reshape operator for a tensor Y ∈ RI1×I2×···×IN to a size

specified by a vector L = [L1, L2, . . . , LM] with
∏M

m=1 Lm =
∏N

n=1 In returns an M-D

tensor X, such that vec(Y) = vec(X), and is expressed as

X = reshape(Y , L) ∈ RL1×L2×···×LM . (2)

Definition 4 (Kronecker unfolding). A (J × K) Kronecker unfolding of C ∈ RI1×I2×···×IN

with In = JnKn,∀n, is a matrix C(J×K) of the size
∏N

n=1 Jn ×
∏N

n=1 Kn whose entries ( j, k)

are given by C(J×K)( j, k) = C(i), for all j = [ j1, . . . , jN], jn = 1, . . . , Jn, k = [k1, . . . , kN],

kn = 1, . . . ,Kn, n = 1, . . . ,N and j = ivec( j, J), and k = ivec(k, K), i = [i1, . . . , iN],

in = kn + ( jn − 1)Kn.

Lemma 1 (Rank-1 Factorization). Consider a tensor product C = A ⊗ B whereA

and B have the dimensions as in Definition 1. Then a Kronecker unfolding C(J×K) is a

rank-1 matrix
C(J×K) = vec(A) vec(B)T . (3)

Lemma 1 also provides a convenient way to compute and updateA ⊗B.

Lemma 2 (Implementation of the Kronecker unfolding). Let C̃ = reshape(C, L) of

C ∈ RI1×I2×···×IN following L = [K1, J1,K2, J2, . . . ,KN , JN], In = Jn Kn, n = 1, 2, . . . ,N.

An (J × K) Kronecker unfolding of C is equipvalent to a tensor unfolding C̃(r) = C(J×K)

where r = [2, 4, . . . , 2N].

Lemma 3 (Rank-P Factorization). Let a tensor C be expressed as a sum of P Kro-

necker products C =
∑P

p=1Ap ⊗ Bp, where Ap ∈ R
J1×···×JN and Bp ∈ R

K1×···×KN ,

p = 1, 2, . . . , P. Then the Kronecker unfolding of C is a matrix of rank-P, such that

C(J×K) =

P∑

p=1

vec
(
Ap

)
vec
(
Bp

)T
. (4)

Lemmas 1 and 3 give us the necessary insight into methods for solving Problem 1, es-

tablishing that the Kronecker tensor decomposition of Y is equivalent to factorizations

of Kronecker unfoldings Y(J×K). The methods for solving Problem 1 are presented in

the subsequent section.

3 Decomposition Methods

The desired property of the tensor decomposition (1) is that not all patterns Xp (and

consequently intensitiesAp) are required to have the same size. Assume that there are

G pattern sizes (G ≤ P) Kg1 × Kg2 × · · · × KgN (g = 1, 2, . . . ,G) corresponding to P
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patterns Xp (p = 1, 2, . . . , P). Patterns Xp which have the same size are classified into

the same group. There are G groups of pattern sizes whose indices are specified by

Ig = {p : Xp ∈ R
Kg1×Kg2×···×KgN } = {p

(g)

1
, p

(g)

2
, . . . , p

(g)

Pg
}, card{Ig} = Pg,

∑G
g=1 Pg = P.

For simplicity, we assume that the first P1 patterns Xp (p = 1, 2, . . . , P1) belong to

group 1, the next P2 patterns (p = P1 + 1, . . . , P1 + P2) belong to group 2, and so on.

The tensor decomposition (1) can now be rewritten as

Y =

G∑

g=1

∑

pg∈Ig

Apg
⊗Xpg

+ E =

G∑

g=1

Y
(g)
+ E = Ŷ + E, (5)

where Apg
∈ RJg1×Jg2×···×JgN , Xpg

∈ RKg1×Kg2×···×KgN and Y (g)
=
∑

pg∈Ig
Apg

⊗ Xpg
. Ac-

cording to Lemma 3, Kronecker unfoldings Y
(g)

(Jg×Kg)
with Kg = [Kg1,Kg2, . . . ,KgN],

Jg = [Jg1, Jg2, . . . , JgN] are rank-Pg matrices, that is

Y
(g)

(Jg×Kg)
=
∑

pg∈Ig

vec
(
Apg

)
vec
(
Xpg

)T
. (6)

In order to estimateApg
and Xpg

, ∀pg ∈ Ig, we define Y (−g)
= Y −

∑

h,g

Y
(h), and

minimize the cost function

D(Y ||Ŷ)=‖Y − Ŷ‖2F = ‖Y
(−g)
−Y

(g)
‖2F = ‖Y

(−g)

(Jg×Kg)
− Y

(g)

(Jg×Kg)
‖2F

=‖Y
(−g)

(Jg×Kg)
−
∑

pg∈Ig

vec
(
Apg

)
vec
(
Xpg

)T
‖2F . (7)

In general, without any constraints, the matrix decomposition in (7) or the tensor

decomposition (1) are not unique, since any basis of the columnspace of the matrix

Y
(−g)

(Jg×Kg)
in (7) can serve as vec

(
Apg

)
, pg ∈ Ig. One possibility to enforce uniqueness is

to restrict our attention to orthogonal bases in which the scalar product of two patterns

Xp, Xq, defined as a sum of the element-wise products of Xp, Xq, is zero for all p ,

q. Alternative constraints for nonnegative data Y , such as nonnegativity, can also be

imposed on Ap and Xp. In other words, by fixing all Aq and Xq in the other groups

q < Ig, we can sequentially minimize (7). These constraints do not have a serious effort

on the generality of the proposed solutions as real world nonnegative data often exhibit

a degree of orthogonality, and images are nonnegative.

3.1 Orthogonal Patterns

Solving the matrix decomposition in (7) with orthogonal constraints yields vectoriza-

tions vec
(
Apg

)
and vec

(
Xpg

)
(pg ∈ Ig) that are proportional to Pg leading left and

right singular vectors of Y
(−g)

(J×K)
≈ U diag{s}VT , where U = [u1, u2, . . . , uPg

] and

V = [v1, v2, . . . , vPg
], that is,

A
p

(g)

l

= reshape
(
sl ul, Jg

)
, Jg = [Jg1, Jg2, . . . , JgN], (8)

X
p

(g)

l

= reshape
(
vl, Kg

)
, Kg = [Kg1,Kg2, . . . ,KgN]. (9)

If all the patterns have the same size, then Kp = K,∀p,Ap and Xp are reshaped from

P leading left and right singular vectors of the Kronecker unfolding Y(J×K).
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3.2 Nonnegative Patterns

We shall now revisit Problem 1 and introduce nonnegative constraints in order to find

nonnegativeAp and Xp from a nonnegative tensor Y . Such a constrained problem can

be solved in a manner similar to the previous problem, that is,Ap andXp are updated by

minimizing the cost functions in (7). Note that we can employ straightforwardly update

rules for nonnegative least squares approximation: the multiplicative update rules [10]

and the ALS algorithms. In the following, we present the multiplicative update rules,

which can be directly applied to (7) and have the form

vec
(
Apg

)
← vec

(
Apg

)
⊛

(
Y(Jg×Kg) vec

(
Xpg

))
⊘
(
Ŷ(Jg×Kg) vec

(
Xpg

))
, (10)

vec
(
Xpg

)
← vec

(
Xpg

)
⊛

(
YT

(Jg×Kg) vec
(
Apg

))
⊘
(
ŶT

(Jg×Kg) vec
(
Apg

))
. (11)

Note that if all the patterns have the same size, the constrained Problem 1 becomes

nonnegative matrix factorization of the Kronecker unfolding Y(J×K). In a particular case

when data Y is matrix and all patterns have the same size, Problem 1 simplifies into the

matrix decomposition proposed in [1].

4 Simulations

The introduced algorithms were verified by comprehensive simulations on synthetic

benchmark data and on real-world images with texture and music data.

4.1 Synthetic Data

In the first set of simulations, we considered 3-D data of the size 90×90×12 composed

of 12 random nonnegative patterns of different sizes, as given in Table 1 (row 2). Our

aim was to extract orthogonal and nonnegative patterns in 50000 iterations or until

differences of successive relative errors (SNR) −20 log10

(
‖Y−Ŷ‖F
‖Y‖F

)
are lower than 10−5.

Results (SNR) in Table 1 (the second row) show an average SNR = 110.16 dB over

100 runs for orthogonal decomposition, and an average SNR = 107.43 dB based on

nonnegative patterns. The results confirm the validity of the proposed model and the

excellent convergence of the proposed algorithms.

4.2 Analysis of Texture Images

The next set of simulations were performed on RGB textures “tile 0021” and “metal-

plate 0020” taken from http://texturelib.com. Textures can be represented by

3-D tensors of pixels, or by 4-D tensors with additional modes for approximation and

detail coefficients in the wavelet domain. For example, the image “tile 0021” of size

600 × 600 × 3 is tiled by patterns Xp of size 75 × 75 × 3 as illustrated in Fig. 1(a). De-

tail coefficients of this image obtained by the biorthogonal wavelet transform formulate

a 3-D tensor of size 300 × 300 × 3 × 3. The approximation coefficients can be inde-

pendently decomposed or combined with the tensor of detail coefficients. Parameters

of Kronecker decompositions such as the number of patterns and their dimensions are

given in Table 1. Approximation errors (SNR (dB)) and ratio (%) between the number

of fitting parameters and the number of data elements are also given in Table 1.
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(a) Original “tile 0021”,

600 × 600 × 3.

(b) Approximation Ŷ , SNR

= 28.37 dB .

(c) Ŷ
(1)

constructed from 10

Xp1
(75 × 75 × 3)

(d) Ŷ
(2)

constructed from 7

Xp2
(600 × 1 × 3).

(e) 10 nonnegative Xp1
(75 × 75 × 3). (f) 10 orthogonal Xp1

(75 × 75 × 3).

Fig. 1. Illustration for orthogonal and nonnegative pattern decompositions of the image

“tile 0021”. (b)-(d) reconstructed images and two basis images by 10 patterns of size 75×75×3

and 7 patterns of size 600 × 1 × 3. (e)-(f) 10 nonnegative and orthogonal patterns.

(a) “metal plate 0012”,

180 × 240 × 3.

(b) Approximation Ŷ , SNR

= 28.38 dB.

(c) Ŷ
(1)

constructed from

orthogonal DWT Xp1
.

(d) Ŷ
(2)

constructed from

orthogonal DWT Xp2
.

Fig. 2. Approximation of “metal plate 0012” in the wavelet domain.

In Fig. 1, the image “tile 0021” was approximated by two groups of orthog-

onal and nonnegative patterns. Two nonnegative basis images corresponding to two

groups of patterns are shown in Figs. 1(c), 1(d). The first group consists of 10 patterns

Xp1
∈ R75×75×3

+ (shown in Fig. 1(e)) expressing replicating structures, whereas the sec-

ond group consists of 7 patterns of size 600 × 1 × 3 representing the background as

in Fig. 1(d). In addition, ten orthogonal patterns are shown in Fig. 1(f). For nonneg-

ative patterns, each pattern in Fig. 1(e) represents a replicating structure in the image,

whereas the orthogonal patterns in Fig. 1(f) were ranked according to the order of singu-

lar values which indicate detail level of patterns. Observe from Fig. 1(f) that the higher

the order of the orthogonal patternsXp, the more details these patterns comprise.

Results for decompositions of the color image “metal plate 0012” are shown

in Fig. 2. In the wavelet domain, we formulated a 3-D tensor for the approximation

coefficients and a 4-D tensor comprising the details in the three orientations (horizontal,

vertical, and diagonal). The two tensors were independently decomposed to find two

groups of patterns whose sizes are given in Table 1 (row 4). The approximate image

was then constructed from the basis patterns and achieved an SNR = 28.38 dB using

13.74 % of the number of entries. Figs. 2(c) and 2(d) visualize two basis images, each

of which was constructed from one pattern group for the approximation coefficients and

all the patterns for the detail coefficients.
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(a) Spectrogram of the sequence.
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(b) Spectrogram for G3.
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(c) Spectrogram for A3
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(d) Spectrogram for F3.
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(e) Spectrogram for E3.
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(f) Spectrogram for D3.

Fig. 3. Log-frequency spectrograms of the music sequence and 5 basis nonnegative patterns cor-

responding to 5 notes G3, A3, F3, E3 and D3. The reconstructed signal has SNR = 20.78 dB.

4.3 Analysis of Patterns in Music

In this example, we decomposed a sampled song “London Bridge” composed of five

notes A3, G3, F3, E3 and D3 played on a guitar for 5 seconds [10]. The log-frequency

spectrogram Y (364 × 151), illustrated in Fig. 3(a), was converted from the linear-

frequency spectrogram in the frequency range from f0 = 109.4 Hz (bin 8) to fI = fs/2 =

4000 Hz (bin 257) with 70 bins per octave. When there was no decomposition, the ap-

proximation error was 27.56 dB. The spectrogram was decomposed to find 11 patterns

replicating along frequency (see row 5 in Table 1). Among the 11 log-frequency spec-

trograms Ŷ(p) constructed from Xp, five spectrograms corresponding to five notes are

illustrated in Figs. 3(b)-3(f). The approximate sequences (in the time domain) achieved

SNR = 22.71 dB and 20.78 dB using orthogonal and nonnegative patterns, respectively.

For this example, we may also apply the nonnegative matrix/tensor deconvolutions to

seek for the similar patterns Xp replicating along frequency [11], however, the new

tensor decomposition requires fewer fitting parameters.

5 Conclusions

A new tensor approximation has been proposed to identify and extract replicating struc-

tures from multiway data. By imposing a constraint on the replicating structures to be

nonnegative or orthogonal, the model has been shown to significantly reduce the num-

ber of fitting parameters, compared with other tensor/matrix factorizations. In a par-

ticular case when all the patterns have the same size, the new tensor decomposition

simplifies into rank-P matrix factorization. This gives us a new insight and the ability

to seek for hidden patterns by employing well-known matrix factorizations such as SVD

and NMF. It has also been shown that a low-rank approximation by directly applying

SVD or NMF to a data tensor results common patterns which represent the background
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Table 1. Parameters and results for decompositions.

Data Size Pattern Size SNR (dB) Ratio
(Kg1 × · · · × KgN ) × Pg Ortho. NNG (%)

random 90 × 90 × 12
(5 × 5 × 2) × 2 &
(6 × 6 × 3) × 4 &

(9 × 9 × 4) × 6
110.16 107.43 12.10

tile 0021

600 × 600 × 3
(75 × 75 × 3) × 10 &

(600 × 1 × 3) × 7
29.69 28.37 17.24

300 × 300 × 3 × 3
(DWT, Detail Coefs.)

(20 × 15 × 1 × 3) × 20 &
(300 × 1 × 1 × 3) × 3

27.84 9.48
300 × 300 × 3

(DWT, Approx. Coefs.)
(15 × 15 × 3) × 40 &

(300 × 1 × 3) × 15

metal plate 0012

180 × 240 × 3
(20 × 20 × 3) × 15 &

(180 × 1 × 3) × 10
27.58 25.35 21.16

90 × 120 × 3 × 3
(DWT, Detail Coefs.)

(5 × 20 × 1 × 3) × 3 &
(90 × 1 × 1 × 3) × 10

28.38 13.74
90 × 120 × 3

(DWT, Approx. Coefs.)
(15 × 15 × 1) × 20 &
(90 × 1 × 1 × 3) × 5

guitar

music sequence
364 × 151

log-freq. spectrogram

(4 × 151) × 5 &
(2 × 151) × 4 &

(7 × 151) × 2
22.71 20.78 13.88

of the data, whereas factorization on the rearranged data extracts replicating structures.

Simulation results for synthetic data, images and music sequence have shown that our

model and algorithms have the ability to extract desired patterns, and explain the data

with relatively low approximation errors. An extension of this pattern decomposition

is to approximate the complex data by several subtensors instead of two (scaling and

pattern) tensors. This can be implemented through multiple stages in which patterns or

scaling tensors are Kronecker products of subtensors.
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