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Abstract. In this paper we propose a new flexible group tensor analysis
model called the linked CP tensor decomposition (LCPTD). The LCPTD
method can decompose given multiple tensors into common factor matri-
ces, individual factor matrices, and core tensors, simultaneously. We ap-
plied the Hierarchical Alternating Least Squares (HALS) algorithm to the
LCPTD model; besides we impose additional constraints to obtain sparse
and nonnegative factors. Furthermore, we conducted some experiments of
this model to demonstrate its advantages over existing models.
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1 Introduction

The group (multi-block) tensor decomposition is a very important technique in
neuroscience, image analysis, and some multi-modal data processing [3,6,11,7].
The group analysis seeks to identify some factors that are common in two or
more blocks in a group [3]. The simultaneous tensor decomposition (STD) is
known as one of the methods to extract common factor matrices from a group of
subjects. The STD model can be applied into tensor based principal component
analysis (PCA) and feature extraction for EEG classification [12].

In this paper, we consider a more flexible decomposition model called the
linked tensor decomposition (LTD). The LTD method extracts not only their
common factor matrices but also their individual (statistically independent) fac-
tor matrices at the same time. The LTD model can be characterized as a gen-
eralized model of the STD. In fact, it is an intermediate model between the
STD model and the individual tensor decomposition model (i.e. standard tensor
decomposition of individual blocks).

In order to implement the LTD model, we applied the Hierarchical Alternating
Least Squares (HALS) algorithm with the CP (Canonical Polyadic) constraint
and two options of sparsity and non-negativity constraints. We call this method
the “Linked CP Tensor Decomposition” (LCPTD). Although the CP model is
generally unique we will impose some constraints to obtain more meaningful
components.
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The rest of this paper is organized as follows. In Section 2, the existing mod-
els of tensor analysis are briefly explored. In Section 3, we introduce a novel
linked tensor decomposition and its algorithm. In Section 4, we demonstrate ex-
periments using our new method and present the results of these experiments.
Finally, we give our conclusions in Section 5.

2 Tensor Decompositions

2.1 Single Tensor Decomposition Based on CP Model

The Canonical Polyadic (CP) model which is also called PARAFAC [8] or CAN-
DECOMP [2] has been well used in positron emission tomography (PET), spec-
troscopy, chemometrics and environmental science [6,1]. The CP model can be
expressed as

Z ≈ ̂Z : = [[G;U (1),U (2), . . . ,U (N)]] =

J
∑

j=1

gju
(1)
j ◦ u(2)

j ◦ · · · ◦ u(N)
j , (1)

where Z ∈ R
I1×···×IN is an N -order tensor and model, U (n) = [u

(n)
1 , . . . ,u

(n)
J ]

∈ R
In×J is an n-mode factor matrix with components u

(n)
j , G = Λ ∈ R

J×···×J

is a diagonal core tensor with entries gj on the main diagonal. The goal of CP
decomposition is to estimate factor matrices by minimizing a Frobenius norm of
residual tensor E := Z − ̂Z. The criterion is given by:
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, s.t. ||u(n)

j || = 1, (2)

for n = 1, . . . , N and j = 1, . . . , J .
When we treat a real-world data, sparsity and non-negativity of factor matrices

mayplay a key role to extractmeaningful components.There aremanymethods for
feature extraction and blind source separation using sparsity and non-negativity
constraints such as sparse principal component analysis [9] and nonnegative ma-

trix factorization [10,6]. A sparsity constraints are given by ||u(n)
j ||1 < v, where

|| · ||1 is l1-norm, and v is a threshold parameter. When it is added into (2), then
the criterion provides sparse factor matrices. Next the non-negativity constraint is

given by u
(n)
ji ≥ 0, gj ≥ 0 ∀j, i, n. In the same way, when the constraints is added

into (2), then the criterion realizes nonnegative tensor factorization (NTF).

2.2 Simultaneous Tensor Decomposition

In this section, we introduce the simultaneousCP tensor decomposition (SCPTD).
This is very important to explain the proposed method; since the STD is closely
related to our new LCPTD.We discuss multiple tensor decompositions from here;
besides we assume that there are S tensors of the same dimensions and we obtain
S decompositions.We can consider S as the number of blocks (e.g. each block data
represents one subject).
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One of the objective of group tensor analysis is to decompose individual ten-
sors one by one based on the CP model which is principally unique. We describe
this model as the individual CP tensor decomposition (ICPTD). However, in
such case the factor matrices are not directly linked.

On the other hand, it is meaningful to extract some common factors for each
block which link block by some common factors. The formulation of the SCPTD

is given by Z(s) ≈ ̂Z
(s)

:= [[G(s);U (1), . . . ,U (N)]] =
∑J

j=1 g
(s)
j u

(1)
j ◦ · · · ◦ u(N)

j .

The key-point here is that the basis components (u
(n)
j of U (n)) are the same for

all blocks. Only the core tensors G(s) are different for individual blocks which
represent features [12].

3 Linked CP Tensor Decomposition

In this section, we propose a new model of simultaneous decomposition called
the “Linked CP tensor decomposition”(LCPTD) as

Z(s) ≈ ̂Z
(s)

= [[G(s);U (1,s), . . . ,U (N,s)]] =

J
∑

j=1

g
(s)
j u

(1,s)
j ◦ . . . ◦ u(N,s)

j , (3)

where each factor matrix U (n,s) = [U
(n)
C ,U

(n,s)
I ] ∈ R

In×J is composed of two set

of bases:U
(n)
C ∈ R

In×Ln (with 0 ≤ Ln ≤ J), which is a common factor matrix for
all blocks and corresponds to the same or maximally correlated components and

U
(n,s)
I ∈ R

In×J−Ln , which corresponds to different individual characteristics.
The LCPTD can be considered as a generalized model of simultaneous de-

composition. When we put Ln = J , its decomposition is equivalent to the simul-
taneous common factor decomposition [12]. On the other hand, when Ln = 0,
its decomposition of each subject is equivalent to the standard tensor decompo-
sition. Then the LTD is an intermediate decomposition between simultaneous
and normal tensor decomposition.

3.1 LCPTD-HALS Algorithm

In this section, we introduce a new HALS algorithm for LCPTD. Optimization
criterion for LCPTD is given by

minimize

S
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, (4)

subject to u
(n,1)
j = · · · = u

(n,S)
j for j ≤ Ln, ||u(n,s)

j || = 1, (5)

for all n, s, and j. Furthermore, we add ||u(n,s)
j ||1 < v or u

(n,s)
ji ≥ 0, g

(s)
j ≥

0 ∀i, j, n, s into (5) if we want to get sparse or nonnegative components.
The Hierarchical ALS (HALS) algorithm was first proposed for the Non-

negative Matrix Factorization and Nonnegative Tensor Factorization (NTF) in
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[5]. The HALS algorithm were applied to the CP model and it achieved good
performances in [4]. In this algorithm, we consider J local-problems and solve
them sequentially and iteratively instead of solving (4) and (5), directly. Let

Y
(s)
j := Z(s) −∑

i�=j g
(s)
i u

(1,s)
i ◦ . . . ◦ u(N,s)

i , the j-th local problem is given by

minimize
S
∑

s=1

||Y (s)
j − g

(s)
j u

(1,s)
j ◦ . . . ◦ u(N,s)

j ||2F , (6)

subject to u
(n,1)
j = · · · = u

(n,S)
j if j ≤ Ln, ||u(n,s)

j || = 1, (7)

for all n and s. The LTD-HALS algorithm can be summarized as Algorithm 1;
note it does not require matrix inversion and is solved by only simple calculation.

Algorithm 1. LTD-HALS algorithm

Input: {Z(s)}Ss=1, J , and {Ln}Nn=1

Initialize: {g(s), {U (n,s)}Nn=1}Ss=1.

E(s) = Z(s) −ΣJ
j=1g

(s)
j u

(1,s)
j ◦ · · · ◦ u(N,s)

j for all s;
repeat

for j = 1, . . . , J do
Y

(s)
j = E(s) + g

(s)
j u

(1,s)
j ◦ · · · ◦ u(N,s)

j for all s;
for n = 1, . . . , N do

Updating u
(n,s)
j :

u
(n,s)
j ← g

(s)
j Y

(s)
j ×1 u

(1,s)
j · · · ×n−1 u

(n−1,s)
j

×n+1 u
(n+1,s)
j · · · ×N u

(N,s)
j for all s; (8)

if j ≤ Ln, t←∑S
s=1 u

(n,s)
j ; u

(n,s)
j ← t for all s; end if

Normalize u
(n,s)
j ← u

(n,s)
j /||u(n,s)

j || for all s;
end for
Update g

(s)
j :

g
(s)
j ← Y

(s)
j ×1 u

(1,s)
j · · · ×N u

(N,s)
j for all s; (9)

E(s) = Y
(s)
j − g

(s)
j u

(1,s)
j ◦ · · · ◦ u(N,s)

j for all s;
end for

until
∑S

s=1 ||E(s)||2F converge

Output: {g(s), {U (n,s)}Nn=1}Ss=1

If we want to obtain sparse components, we implement the following updates
after (8):

u
(n,s)
j ← sign(u

(n,s)
j )� [abs(u

(n,s)
j )− ξn1]+ for all s; (10)

where ξn is a positive parameter deciding on their sparsity.
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(a) Generating model (b) Result of Ln = 2

(c) Result of Ln = 1 (d) Result of Ln = 0

Fig. 1. Linked Multi-block Tensor Factorization

If we want to obtain nonnegative components, we implement the following
updates after (8) and (9):

u
(n,s)
j ← [u

(n,s)
j ]+ for all s, (11)

g
(s)
j ← [g

(s)
j ]+ for all s. (12)

4 Experiments

4.1 Toy Problem for Linked Multi-block Tensor Factorization

In this part, we applied the LCPTD to a toy problem (benchmark) for linked
multi-block tensor factorization. We generated two block data tensors consisting
of a one common basis factor and two individual basis factors with noise (see
Fig. 1(a)). And we decompose them by our LCPTD model with nonnegative
constraints for various number of common bases Ln ∈ {2, 1, 0} for n = 1, 2. Fig.
1(b,c,d) depict the results of this experiment. It is obvious that the result of
Ln = 2 couldn’t represent the original data tensors since the degree of freedom
of model is not sufficient. On the other hand, the result of Ln = 0 could represent
the original data tensors, but each basis is not matched, completely. The result
of Ln = 1 could represent not only the original data tensors, but also each basis;
besides, the additive noise were reduced.

We can see that the LCPTDmodel can be very useful assuming that some com-
ponents are common in generatingmodel.The blind source separation can separate
into two original sources from two observed signals. It is very interesting that the
LCPTD can achieve separation of three bases (i.e., a common and two individual
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PSNR 15 dB 17.2 dB 21.4 dB 21.3 dB 21.2 dB 20.6 dB

Fig. 2. Face images corrupted by additive noise and the reconstructed images (PSNR=
15 dB, J = 40): 1st column: original images, 2nd column: noisy images, 3rd column:
ICPTD model, 4th column: LCPTD (Ln = 35), 5th column: LCPTD with sparse con-
straint (Ln = 35), 6th column: LCPTD with nonnegative constraint (Ln = 35), 7th
column: SCPTD model.
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Fig. 3. PSNRs for various noisy data sets
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bases) fromonly twoobserved tensors.We shouldnote that the selectionofLncould
be very important deciding factor to obtain proper decomposition for the LCPTD
method from this experiment.

4.2 Images (Faces) Reconstruction and Denoising

In this part, the LCPTD was applied to face reconstruction problems and the
performances were compared with other models. The Yale face database consists
of 165 gray-scale images of 15 individuals. There are 11 images per subject with
different facial expressions or configurations. In this experiments, we used 15 full-
face images; we took a one image from each subject. Size of images are 215×171
pixels, then we considered that I1 = 215, I2 = 171, and S = 15. Furthermore,
we prepared salt-and-pepper noised data sets: SNR ∈ {5, 10, 20} [dB].

We applied our new LCPTD model, a sparse LCPTD, and a nonnegative
LCPTD with various numbers of common components for the noise free and
noised data sets; the number of bases was fixed as J = 40, and number of
common components was changed in Ln ∈ {0, 5, 10, . . . , 40}. We computed
the PSNR between the original faces and the reconstructed faces.

Fig. 2 depicts the results of face reconstruction. We can see that the ICPTD
model couldn’t reduce the noise well, and the SCPTD model was robust with
respect to noise but reconstructed faces were too fuzzy (distorted). However, the
LCPTD based methods gave the appropriate and intermediate decompositions
for both models.

Fig. 3 depicts the graphs of PSNR for various number of common components.
We can see that if the noise level becomes larger, the maximum points of PSNR
move to right. In noise free data set Fig. 3(a), the maximum PSNR was obtained
at Ln = 0 for all methods; so the ICPTD model is the best for them in this case.
On the other hand, the maximum PSNRs were obtained by the LCPTD based
methods in Fig. 3(b,c,d,e). It is also interesting that the nonnegative LCPTD
kept high PSNR for smaller number of common components in comparison with
the other methods in high noise level (see Fig. 3(d,e,f)). It can be considered
that the nonnegative constraint is useful for this problem.

In general, because real data includes often some noise factors, the proposed
method could be very useful and practical for the real tensor data analysis. The
higher noise level requires large number of common components, but multitude
of common components often only hampers the fitting. However, we have to
select the best parameter of Ln and the open problem is how to select it. We
may be able to select Ln depending on PSNR if it is known as prior information.

5 Conclusion

We have presented a method of linked CP tensor decomposition (LCPTD) in-
cluding sparse and nonnegative factorization by using the HALS algorithm.
LCPTD can be considered as a generalized model of simultaneous CP tensor
decomposition with common factors, and it provides some improvement over
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existing methods by selecting optimal parameters of Ln and ξn. The parameter
selection can be considered as a key issue of flexible model. The Bayesian method
or cross validation method may be able to determine such parameters. Its detail
and application are reserved for our future works.
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